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Executive Summary

The LOCALISED project aims to downscale decarbonisation trajectories consistent with
Europe's net-zero targets to local levels to support local authorities, businesses and
citizens in speeding up the uptake of mitigation and adaptation actions. To achieve this,
a lot of data is necessary at a local level. T3.2 dealt with the collection of the data,
properly assessing which data is available and where data may be missing or not
available at a sufficiently high spatial resolution. The task also involved the collection of
additional data that may be necessary for dealing with these issues. T3.1, of which this
deliverable is an outcome, has the objective to properly examine and define procedures
to downscale the national target levels from EUCalc (European Calculator,
https://www.european-calculator.eu/, Costa, 2022), to smaller regions, and to some
extent deal with missing data. It builds on deliverables D3.2 and D3.3 from T3.2 which
focus on data collection and links, to a lesser extent, with T2.3 (particularly D2.4 and
D2.5), which also concern the collection of spatial data.

The downscaling of spatial datasets collected by LOCALISED, including the national data
from EUCalc, requires their spatial disaggregation from a coarse level (e.g. country
level) to fine spatial resolutions (e.g. local regions). This process is not straightforward:
it requires determining the spatial distribution of the coarse-level data at the fine spatial
resolution. T3.1 is aimed at examining the problem and developing a methodology. As
the problem deals with many datasets - some at higher resolution than others - the
idea arose to exploit the connection between them. Machine learning (in the form of
Random Forest) is used to establish the relationship between different variables;
additional datasets were collected in T3.2 to serve as proxy-data for this approach.
T3.1 also investigates how the quality of datasets can be communicated and defines a
quality measure based on the type of data processing performed on the source dataset.

From its conception, the aim of the LOCALISED project was to provide a downscaling to
NUTS3 level. However, we learned, through discussions with WP5, that going beyond
NUTS3 and down to LAU level would be very beneficial for local authorities to support
Sustainable Energy and Climate Action Plans (SECAPs). Downscaling to a LAU level
poses additional challenges to consider, relating mainly to the availability of the data
and to its spatial differences.

The deliverable D3.1 - Disaggregation Methodology and Working Disaggregation Tool,
presents these aspects to complete the methodology for spatially disaggregating
datasets in the context of the LOCALISED project.

11


https://www.european-calculator.eu/
https://docs.google.com/document/d/1D9p6Ebq2Emx8ixqWW7Pw8E3J7_Rg7fkU/edit#bookmark=id.3mvvaccmpuh2
https://docs.google.com/document/d/1D9p6Ebq2Emx8ixqWW7Pw8E3J7_Rg7fkU/edit#bookmark=id.nd28upesgrth
https://docs.google.com/document/d/1D9p6Ebq2Emx8ixqWW7Pw8E3J7_Rg7fkU/edit#bookmark=id.djeukukdhnrl
https://docs.google.com/document/d/1D9p6Ebq2Emx8ixqWW7Pw8E3J7_Rg7fkU/edit#bookmark=kix.sndnx06jq23c
https://docs.google.com/document/d/1D9p6Ebq2Emx8ixqWW7Pw8E3J7_Rg7fkU/edit#bookmark=id.gx4rkvjl388m

LOCALISED
D3.1 - Disaggregation Methodology and Working Disaggregation Tool

1 Introduction

1.1 Purpose of the work

This deliverable is the outcome of T3.1 - Extension and Improvement of the
Disaggregation Tool. LOCALISED is a data-driven project, which employs - among
others - spatial datasets to process data relating to climate, energy, demography,
economy, etc., while maintaining the information of the regions where this data is
applicable. The data for this purpose was collected in WP2 (for climate related data) and
WP3 (for other spatial data) and provided to other WPs. Climate data is used in WP4 to
determine possible adaptation measures for each region, in WP5 to support the creation
of SECAPs, and in WP6 to disaggregate intersectoral pathways. Furthermore, WP7 uses
the data to identify local businesses and industries while the tools developed in WP8
use the data for profiling.

Data was sourced from different databases for WP2 and WP3 (Deliverables D2.5 (Patil
et al., 2023) and D3.3 (Verstraete et al., 2023)), respectively and its quality assessed.
The datasets are typically available at a specific spatial resolution - Some is provided at
the level of the EU member states (a NUTSO level), while the remainder is available at
the level of smaller regions or the municipality level. The different WPs that comprise
the LOCALISED project work at different spatial levels and need data on a matching
spatial level. The purpose of the developed disaggregation tool is to offer a mechanism
for supplying datasets at fine spatial resolutions. As such, this implies the need for so-
called spatial disaggregation, which distributes the data defined at a given spatial level
across the smaller regions contained within. This is a non-trivial problem which requires
an analysis of available data, the collection of additional datasets to support the
operation, and the development of methodologies to assess the quality and suitability
of the datasets. In addition to data disaggregation, it is also necessary to incorporate
mechanisms to address missing data and assess its quality to estimate the reliability of
subsequent analyses using the data.

1.2 Spatial hierarchy of statistical regions in the EU

Many collected datasets have an associated spatial resolution. Two obvious examples
are population and GDP: which can be considered at the spatial resolution of countries
or at different administrative spatial resolutions within the country. Countries have their
own administrative divisions at multiple levels, but these differ between countries which
complicates comparisons between regions and between countries. To facilitate
comparison, the EU has developed the NUTS hierarchy. NUTS stands for Nomenclature
of Territorial Units for Statistics - the acronym stems from French: Nomenclature des
Unités Territoriales Statistiques - and defines a hierarchy of three spatial subdivisions
for the EU member states (Figure 1). The highest level in the hierarchy is the country
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level (NUTSO0), and each proceeding level partitions the previous level into smaller
regions, thereby increasing its spatial resolution. The idea behind the NUTS partitioning
is that the region definitions to some extent relate to the spatial distribution of the
population. As a result of this, the definitions of the regions can change and are
consequently revised approximately every four years. For the LOCALISED project, the
NUTS definitions for the year 2016 are considered (NUTS - GISCO - Eurostat, 2021).
This choice is based on the adoption of this NUTS definition standard in 2018, as the
majority of data collected within the project adheres to this standard. The NUTS
partitioning tries to follow the countries’ administrative divisions, but occasionally it
deviates. Poland, for example, is administratively divided in 16 regions, but for the
NUTS2 division the Mazowian administrative region is split into two NUTS2 regions,
yielding a total of 17 NUTS2 regions.

i
eurostat
=

Figure 1 Illustration of NUTS levels (source: Eurostat).

In many countries, the NUT3 level still contains regions larger than the lowest level
administrative units. As a result, an additional level is added below NUTS3: the LAU-
level (Local Administrative Unit). This level is however more problematic in its definition
and can potentially change year to year.

1.3 Spatial levels in the LOCALISED project

In its initial conception, LOCALISED intended to provide a downscaling of the EU
pathways from a NUTSO to a NUTS3 level. WP2 provides decarbonisation pathways on
a NUTSO level using the EUCalc tool (Costa, 2022), which WP3 spatially disaggregates
for WP4 and WP5. WP4 is developing the Modular Integrated Decarbonisation
Adaptation Solver (MIDAS) model that aims to provide regional mitigation and
adaptation measures, which are defined on a NUTS3 level. WP5 aims to support local

13
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authorities with indicators oriented towards Sustainable Development Goals (SDGs) and
Sustainable Energy and Climate Action Plans (SECAPs). Here it became clear that the
LAU level would be much more interesting and provide better support for the local
authorities. Table 1 provides a short overview of the spatial levels required by other
WPs.

Table 1 Spatial level at which different WPs work.

Work Task Spatial
package Level
WP2 Provides decarbonisation pathways NUTSO
WP4 Provides regional mitigation and adaptation measures | NUTS3
WP5 Requires data to fill in SECAPs LAU
WP7 Requires business-related data NUTS2

As specified in the proposal, D3.1 deals with the disaggregation of EUCalc
decarbonisation pathways from NUTSO to NUTS3. However, the data requirements in
different WPs differ in terms of the acceptable spatial level, and LAU has become a
pertinent level. Furthermore, WP5 and WP7 require data that is not part of the EUCalc
pathways and was instead collected from different European databases. Examples of
such data are “people at risk of income poverty after social transfers” and “gross value
added in agriculture, manufacturing and transportation sectors”, which occur
respectively in WP5 and WP7. Most of such data is however not available at a fine NUTS3
or LAU spatial resolution level. Therefore, such data is as well disaggregated.

In the light of this, the following steps were considered for handling data. First, the data
requirements (which data is needed at which spatial level) for the different WPs were
determined. Then public databases were searched for the appropriate data. The data
was collected at the finest spatial resolution at which it is available, and all datasets
ultimately disaggregated to LAU level. The developed Data Sharing Platform (DSP)
(preview provided in D3.3 and final version to appear as D3.4) is designed to allow
queries and provide data at any spatial resolution. This offers transparent access to the
spatial datasets, independent of the resolution of the original source data.

During the data collection process, national databases, such as the Federal Statistical
Office of Germany (https://www.destatis.de/EN/Home/ node.html), were also
explored. These databases provide data specific to individual countries, leading to
inconsistencies in the collected datasets, as similar data may not be available for all EU
countries. Additionally, searching each country's national database is challenging due
to differences in language and data structures. However, these national sources often

14
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contain valuable information. Therefore, at this stage, datasets from select project
partner countries—Germany, Poland, and Spain—were examined. This investigation
helped collect some datasets for verifying disaggregation methods and provided minor
insights into additional data availability across different countries.

Table 2 provides an overview of the amount of data collected at the different spatial
resolutions. At a NUTSO level only 27 regions exist, representing the 27 member states.
Apart from the EUCalc pathway data, 332 additional datasets were collected at this
level. No datasets were collected at a NUTS1 level. As data commonly exists at a higher
spatial resolution or at NUTSO level, NUTS1 is not a common spatial level for data
reporting. The number of regions quickly grows with the NUTS levels, reaching 95314
regions at LAU level. To cope with the potential issues of changing definitions at the
LAU level, most data collected at LAU level is point-data that has associated x-y
coordinates available. The precise x-y coordinates of the data allow us to overlap the
data with LAU regions to obtain data for these regions. If there is a requirement to
change LAU definitions in the future, one could overlap the data again to obtain data
for new LAU regions.

Table 2 Overview of the number of datasets and amount of data at different spatial levels.

Spatial level Number of regions Number of datasets
across the EU

NUTSO 27 332 + EUCalc pathway data

NUTS1 88 -

NUTS2 232 53

NUTS3 1155 160

LAU 95314 124

While offering transparent access to the spatial datasets at different resolutions is
useful, it also means that not all data will be of the same quality. The data available at
the requested resolution or finer will be of high quality. Spatial disaggregation of data
will, inherently, lower the data quality. The methodology to assess the quality level is
discussed in Section 2.

Further, data on various topics is collected within the project. Some required data may
not be available in some regions or even countries. The method in which missing data
is treated is described in Section 3. Last, the disaggregation of the data itself is a
stepwise process from the lowest level to the highest, ending with the EUCalc pathway
This entire approach is elaborated in Section 4.

15
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Public databases

i For each dataset in “collected data” For each dataset in “staged data”
tables: tables:
Is dataset
Is dataset YES
‘ = 5 At LAU
hissing values2 . i
v spatial level? L 4
Zroce_sstﬁnflildumg Hig Fill missing > Disaggregate
ata in “co ecte values to LAU
data” tables
Dump datain Dump datain
“staged data” |« “processed |«
tables data” tables
' Data Sharing
Collected data Staged data Processed data =N Platform

tables tables table
Database created in LOCALISED project

Figure 2 Workflow for imputation and disaggregation.

Figure 2 shows the workflow for the data imputation and disaggregation. Both these
stages take place outside of the DSP (Section 5) and can be considered as processing
steps between the data acquisition and the data sharing. The collected data is stored in
the database, in a set of tables. Missing data is identified and filled (also referred to as
data imputation). This data is stored separately in another set of tables in the database.
The next step is to perform the spatial disaggregation. The disaggregated data is again
stored separately. This last level is made available to the end users through the DSP.
The benefit of this approach is that the collection and analysis of data can happen
without affecting the content of the DSP, while revisions of or improvements to the data
in the DSP can be performed periodically and are traceable. In addition, the lack of
additional processing needs at the time of data querying improves the performance of
the database.
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2 Data Quality Rating

A large amount of data is collected from various sources. As previously explained, all
data is collected at the lowest spatial level (i.e. the highest spatial resolution at which
it is available), while the DSP provides a transparent unified access method to query
data at any spatial level. This implies that not all data will be of the same quality: if we,
for example, consider data at NUTS3 level, then some data will have been sourced at
NUTS3 or even LAU level, whereas other data may have been available only at NUTS2
or higher. Data queried at a spatial level higher than the one at which it was collected
should be of good quality, provided there is no missing data. However, data that is
queried at spatial level lower than its source data, must be disaggregated and, as a
result, is most likely to be of lower quality. Similarly, while methods were developed to
account for missing datasets, the quality of the queried data that refers to this missing
data will also be lower.

All data collected and processed in the LOCALISED project is annotated with a five-
stage quality rating: VERY LOW, LOW, MEDIUM, HIGH, VERY HIGH. The final quality
rating for a value depends on its availability (with respect to spatial level and missing
data) and the processing steps performed to obtain its value.

In the first stage, required datasets are collected at their available spatial resolution. At
this stage, the values contained in these datasets are assigned the quality rating VERY
HIGH.

The next stage is data imputation to account for missing data. The procedure described
in Section 3 assigns a quality rating to imputed data based on how the imputed value
was determined.

The final stage is spatial disaggregation (for datasets that were not sourced at LAU
level). The process of spatial disaggregation generally lowers the quality rating of the
input dataset, depending on the level of the source data and the quality of the
disaggregation itself. This procedure is explained in Section 4, together with the other
details pertaining to spatial disaggregation.

3 Missing Value Imputation

The first processing step when a new dataset is received is missing value imputation
and the resulting assignment of quality levels. Dealing with missing values is different
for the different spatial levels, due to the size of the datasets. The process will be
discussed beginning at the LAU level.

17
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3.1 LAU regions

At the LAU level, most data consist of point data. As an example, consider the power
plant locations with their generation capacity sourced from JRC Open Power Plants
Database (JRC-PPDB-OPEN) (Kanellopoulos et al., 2019). If there is no power plant in
a region, it won't be represented in the dataset since the dataset does not model the
absence of power plants. In this case, there will be many LAU regions without data for
a power plant, but those values can reliably be set to 0. The quality rating in this case
is VERY HIGH.

One exception is the survey data collected from EUROSTAT regarding the satisfaction
of people with public transport. This data is required byWP5 to fill out the SECAPs but
is only available for some LAU regions. Contrary to the previous example, this clearly
concerns missing data and imputation is not as straightforward as above. A choice was
made to complete the data by assigning a value of 0 to the missing values and assigning
a quality rating of VERY LOW.

This procedure was applied for the five different datasets that relate to survey variables:

‘percentage_of people_very_satisfied_with_public_transport’,

‘percentage_of _people_rather_satisfied_with_public_transport’,

‘percentage_of people_rather_unsatisfied_with_public_transport’,
‘percentage_of_people_not_at_all_satisfied_with_public_transport’
‘percentage_of_people_with_unknown_satifactory_level_with_public_transport’

3.2 NUTS3 regions

The idea behind the methodology for data imputation is that datasets (variables) are
not fully independent and connections between datasets can be made. A machine
learning approach aims to uncover such connections and employ them to determine
missing data.

At NUTS3 level, there are 1155 regions across the EU (Table 2, Section 1.3). This
provides a large enough sample size to employ machine learning algorithms to impute
missing values. At this level, there are 160 datasets, with 32 of them suffering from
missing values. Figure 3 shows the number of missing values for a sample of the NUTS3
datasets. For some variables the number of missing values is rather small, but for others
it is nearly half of the data.
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Figure 3 The number of missing values per variable at NUTS3. The green line at the top
indicates 1155, the total number of values.

To perform the imputation, training data is necessary. For this purpose, we consider all
the NUTS3 levels that do not have missing data. This yields 128 complete datasets with
data for each of the 1155 regions. In addition, the datasets at LAU level (excluding the
survey datasets, as explained in Section 3.1) are aggregated to NUTS3 level, yielding a
complementary 119 complete datasets. In total, this results in 247 datasets that
together constitute the predictor set for the model. A single experiment considers all
these datasets, using a random selection of 10% of the 1155 regions that do not have
missing data for testing and the remaining 90% for training. The iterative imputer is set
to perform 10 such experiments - each time picking a different random set of training
and testing data - after which the imputed results are verified using the R-squared
method.

R-squared score ranges from 1 to negative infinity. A perfect prediction would result in
an R-squared score of 1. Subsequently, worse predictions (thus worse imputation)
possess lower values. A negative R-squared value indicates that the model’s predicted
values perform worse than if one were to use the average of existing values as a filler
for the missing values. As it has an upper limit, the R-squared score lends itself as a
good indicator for the quality of the imputed data.
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These imputed values are always floats, which are arithmetically rounded in case the
desired values are integers (For example, population in a region should be an integer).
This rounding occurs before the calculation of the R-square score. Since 10 different
experiments are performed, 10 R-squared scores are obtained. Among these, the lowest
R-squared score is considered as an indicator for the quality of the dataset after
imputation of the missing data. Table 3 shows how the R-squared scores are mapped
to the data-quality labels.

Table 3 Quality ratings for missing value imputation.

R2 Quality Rating
> 0.9 HIGH

> 0.5 and <=0.9 MEDIUM

> 0.2 and <=0.5 Low

<= 0.2 VERY LOW

Note that VERY HIGH is missing even in case of a perfect prediction (R-squared score
equal to 1), we do not assign the label VERY HIGH, as this was reserved for data that
is directly obtained from the source.
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The final R-squared scores (i.e. the minimum of the R-squared scores of the 10
experiments for each variable) for the data imputation of the 32 NUTS3-level sets with
missing data are shown on Figure 4. The variables for which the imputation worked best
(R-squared score > 0.9) are:

'employment’,
'employment_nace_sector_b_e',!
'employment_nace_sector_c',
'gross_domestic_product’,
'gross_value_added'.

On the other side of the spectrum, the worst imputation results (R-squared score < 0.5) are seen for
the variables:

'employment_nace_sector_a’,
'gross_value_added_nace_sector_c',
gross_value_added_nace_sector_j',
gross_value_added_nace_sector_k’,
'road_transport_of_freight'.

1 NACE sectors refer to the statistical classification of economic activities in the European
community. The sector descriptions are as follows:

nace_sector_a - agriculture, forestry and fishing

nace_sector_b_e - mining and quarrying; manufacturing; electricity, gas, steam and air
conditioning supply; water supply; sewerage, waste management and remediation activities
nace_sector_c - manufacturing

nace_sector_f - construction

nace_sector_g_i - wholesale and retail trade; repair of motor vehicles and motorcycles;
transportation and storage; accommodation and food service activities

nace_sector_j - information and communication

nace_sector_k - financial and insurance activities

nace_sector_lI - real estate activities

nace_sector_m_n - professional, scientific and technical activities; administrative and support
service activities

nace_sector_o_q - public administration and defence; compulsory social security; education;
human health and social work activities
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Figure 4 R-squared score for each variable that

minimum o

light marks the 0.9 limit that matches with HIGH.

To understand the differences in performance, we checked the Pearson correlation

between these variables, the top 3 correlated variables for each, and the number of

missing values in each case. If the variables are highly correlated with other datasets,
the correlated variables could be used by the random forest model for prediction. The

results for the best performing variables are shown in Figure 5.
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Figure 5 Correlation matrix for the best performing variables at NUTS3. These variables are
highlighted in green. [top-right] Number of missing values in case of each best performing
variable. [bottom-right] The R-squared scores in case of each best performing variable.

From Figure 5, it is evident that very few records are missing for the best performing
variables (marked in green). Additionally, the figure shows that they highly correlate
with some of the predictor variables. This creates the perfect combination and leads to
a good imputation performance of the imputer.

A similar figure (Figure 6) provides insights into the worst performing variables. Here,
different explanations exist for the different variables. In the case of
'gross_value_added_nace_sector_j' and 'gross_value_added_nace_sector_k', the
number of missing values is quite high, leading to poor data imputation. However, while
'employment_nace_sector_a' and ‘road_transport_of freight' have a low number of
missing values, they exhibit only low correlations with any of the possible predictor
variables. Of note, 'gross_value_added_nace_sector_c' has a relatively low humber of
missing values but only correlates highly with the variable
'gross_value_added_nace_sector_b_e'. As it turns out, this variable also misses data in
the same regions as 'gross_value_added_nace_sector_c' and cannot serve as a
predictor. This in turn also leads to poor data imputation.
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Figure 6 Correlation matrix for the worst performing variables at NUTS3. The worst variables
are highlighted in red. [top-right] The number of missing values in case of each worst
performing variable. [bottom-right] The R-squared scores in case of each worst performing
variable.

3.3 NUTSZ2 regions

The methodology for data imputation of missing data for NUTS2 regions is similar to
that for NUTS3. However, with only 232 regions at NUTS2 level (Table 2, Section 1.3),
the dataset is on the smaller side, which may result in a poor performance of any
algorithm that requires training.

The project collected 53 datasets at this level, 40 of which suffer from missing data.
Figure 7 shows the number of missing values for a sample of these 40 NUTS2 datasets.
The number of missing values for some is rather small, but for others well over 50%.
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Figure 7 The number of missing values per variable at NUTS2. The green line at the top

indicates 232, the total number of values.

Similarly to how NUTS3 data imputation benefited from the aggregated datasets at LAU
level, NUTS2 data imputation benefits from both the aggregated LAU datasets (124

datasets) and NUTS3 datasets (128 that did not have missing data).

Figure 8 shows the final R-squared values (the minimum of the 10 experiments) for the

NUTS2 datasets that were missing data. Compared to the NUTS3 level, the imputation

does not work so well for a larger number of datasets.

The best performing variables (R-squared score > 0.9) are
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each of

The correlation graph (Figure 9) suffices for explaining the good performance
these variables has at least one predictor that correlates very well.
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Figure 9 Correlation matrix for the best performing variables at NUTS2. The best performing
variables are highlighted in green.
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The variables for which the imputation provided poor results (R-squared score < 0.5) are

'air_transport_of_freight',

'air_transport_of_passengers’,
'employment_female_age_between_15_to_64_agriculture’,
'employment_female_age_between_15_to_64_manufacturing',
'employment_female_age_between_15_to_64_transportation’,
'gross_value_added_growth',

'income_of_households’,

'maritime_transport_of_freight',
maritime_transport_of_passengers’,

'number_of_bovines',

'number_of_breeding_pigs',

'number_of_dairy_cows',

'number_of_equidae’,

'number_of_laying_hens',
'number_of_rabbits_breeding_females',

'number_of_sheep’,

'number_of_trailers_and_semi_trailers',

'percentage_of households_with_internet_access',

percentage_of people_at_risk_of poverty_or_social_exclusion',
percentage_of people_with_tertiary_education’,
percentage_of _unemployed_people’,
production_value_in_agriculture’',

'real_labour_productivity',
'subsidies_on_products_in_agriculture’,
'Gaxes_on_products_in_agriculture'.

Figure 10 shows the correlations between these variables and their top 3 correlating
variables. Here as well, the imputation does not work well either due to low correlations
with other variables or the correlating variables are missing data themselves.
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Figure 10 Correlation matrix for the worst performing variables at NUTS2. The worst
performing variables are highlighted in red.

3.4 NUTS1 and NUTSO regions

At NUTS1 level, no data is collected, as the required variables (datasets) were available
either at a higher spatial resolution or at NUTSO level.

For NUTSO regions, a single variable (dataset) only contains 27 samples - coinciding
with the 27 member states. At NUTSO level, there are 332 datasets with only 11 of
them suffering missing values. Figure 11 shows the number of missing values in each
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of those 11 datasets. In addition to those 321 complete NUTSO datasets, all the
complete datasets and higher NUTS level can be aggregated to complete the NUTSO
data. This large number of datasets however does not change the fact that the sample
size is too small for performing missing data imputation using machine learning in the
same way as for NUTS2 and NUTS3 regions.
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Figure 11 Overview of the number of missing values for the 11 NUTSO datasets that have
missing values.
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The same approach was performed as for the survey data at LAU level: regions at
NUTSO that did not have a value are assigned a value of 0 in order to have a full dataset,
but the quality of the value is marked as VERY LOW.

4 Disaggregation Methodology

4.1 Introduction

Spatial disaggregation is an approach to increasing the spatial resolution of the data. It
should be noted that this is not a transformation in the sense of e.g. a coordinate
transformation but rather constitutes a remapping of the contained data.

Different approaches have been considered in literature, ranging from statistical to
machine learning methods (Monteiro, 2018). Common to all these approaches is that
additional knowledge, that sheds light on how the data should be distributed, is
required. This can come in the form of statistical knowledge, expert-provided input, or
through the use of other datasets. The idea behind using additional data is presented

in Figure 12

Emissions from the
residential sector o0t ) Shlare Ofl '
regiona ulation
1000 Mt ° & pop
20% 30%
‘ X 1000
(7] 500 Mt
& () 200 Mt 300 Mt

Figure 12 Conceptual example of spatial disaggregation using proxy data.

The example in Figure 12 aims to disaggregate emissions from the residential sector
over three sub-regions. While this data is not known at the level of the sub-regions, it
stands to reason that the emissions from the residential sector are correlated with the
population. As the population in this example is known at the level of the sub-regions,
the distribution of the population can be used as an indicator to disaggregate the
residential sector emissions among the sub-regions accordingly. This example illustrates
the need for a dataset that exhibits a good correlation with the data to be disaggregated
and is available at the higher spatial resolution. This data that helps steer the
disaggregation is referred to as proxy data.
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Given the variation in size (NUTSO has 27 regions, whereas LAU has 95314 regions),
different approaches are considered for different levels. However, all levels make use
of proxy data. The need for spatial disaggregation was clear from the start of the
project. The procedures for identifying suitable proxy datasets were developed in WP3
and detailed in D3.3. WP3 considered the collection of the proxy datasets in parallel
with the collection of the datasets that had immediate relevance with the project.

The approach for involving proxy data bears some resemblance to the methodology for
data imputation. The total number of regions at the NUTS3 and NUTS2 levels allow for
machine learning to aid spatial disaggregation. Consider, as an example, the
disaggregation of “employment” data from a NUTS3 to a LAU level. It is first necessary
to determine the relationship between “employment” and the data we have at LAU level.
The candidate proxy data at LAU level can be aggregated to match the NUTS3 level -
this is @ more trivial operation. With all datasets now at a NUTS3 spatial resolution, it
is possible to establish how the values of the candidate proxy datasets connect to the
“employment” data.

As was the case for data imputation (Section 3), a random forest model is used to
determine the relation between the NUTS3 dataset and the aggregated candidate proxy
datasets. This established relation is then used to predict the data at LAU level. There
is one caveat: the predictor will predict all values at LAU level but has no knowledge of
constraints. The values of “employment” in sub-regions at LAU level should sum up to
the known value of the containing region at NUTS3 level, but the predictor potentially
returns values that do not meet this constraint. As this constraint has to be met, the
outcome of the predictor is rescaled so the calculated values correctly sum up to the
NUTS3 values.

The disaggregation of NUTSO dataset suffers - similarly as its data imputation - from
too small a sample size. This prevents automatically identifying proxy datasets. So, for
the spatial disaggregation of NUTSO data, proxy datasets were manually specified.The
quality of the data is dependent on how good the random forest model managed to
predict the values. This is in turn dependent on the quality of the datasets that were
used and the quality of their connection. The quality is assessed on a scale of five levels
(Section 2), and is determined based on the R-squared score of the predictions. The
mapping of the R-squared score to the quality levels is the same as for the data
imputation (Table 3 Section 3.2).
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Table 4 provides a summary of the mechanisms for spatial disaggregation and for
assessing the quality of the resulting datasets.

Table 4 Methodology for disaggregation and quality assessment by spatial level.

Spatial level | Disaggregation approach Disaggregation quality
rating
NUTS3 - Random Forest model Based on prediction
- LAU data as predictors scores/manual
- Some predictions are overridden by
manual proxies if required
NUTS2 - Random Forest model Based on prediction
- LAU + NUTS3 data as predictors scores/manual
- Some predictions are overridden by
manual proxies if required
NUTS1 - (No data collected at this level) -
NUTSO - Manual proxy assignment based on Manual
the learnings from above

In the next sections, an analysis of the performance of the spatial disaggregation for
the different NUTS levels is provided.

4.2 Spatial disaggregation of NUTS3 datasets

All the data collected at the NUTS3 level undergoes a disaggregation process to achieve
a finer spatial resolution at the LAU level. These datasets are systematically categorized
into three distinct groups: general statistics, economic indicators, and other
indicators. The third category, which encompasses various environmental and societal
factors, includes variables related to pollution levels, exposure to natural hazards, and
other relevant aspects. To ensure a comprehensive evaluation, the performance of the
data disaggregation process is analyzed separately for each of these three categories.
The following subsections provide a detailed discussion of the effectiveness, challenges,
and key observations associated with disaggregating data in each category.
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4.2.1 General statistics

In this section, the performance of the spatial disaggregation for general statistical
data (such as population, deaths, etc.) from NUTS3 level to LAU level is discussed.
Figure 13 shows the target variables, i.e. the NUTS3 level variables that need to be
disaggregated, on the X-axis and the predictor variables, i.e. the candidate proxy data
that is available at LAU level on the Y-axis. At each intersection point of a target
variable and a predictor variable is an ellipse. The colour of the ellipses match with the
assigned quality label (Table 3, Section 3.2), while the size is an indicator for the
importance of the predictor in this model (calculated using permutation importance).
Note that the cumulative size of the ellipses for a single target variable should be the
same for all variables. Only predictor variables with an importance > 0.05 are shown
in the plot as the importance is too small for the other variables to be significantly
represented in the figure.
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Target variables

Figure 13 R-squared score and importance of different predictor variables for general
statistical variables at NUTS3 (limited to variables with importance > 0.05).

Figure 13 clearly shows that for target variables such as “population”, the variable
“residential heat demand” is a good predictor: the R-squared score evaluates to
MEDIUM and the predictor is deemed most important for the model. Similar result

are obtained for "male population”, “female population”, “live births” and “deaths”.
Similarly, it is clear that for “statistical area”, the different land cover variables such as

7 0

“railway network”, “water bodies”, etc. are evaluated as good predictors.
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All of these target variables are however disaggregated with a quality rating “"MEDIUM”,
indicating that there is room for improvement. However, improvement is dependent on
additional datasets and considering that the LAU level is the smallest statistical unit, a
lot of data simply does not exist at this spatial resolution.

4.2.2 Economic indicators

The quality of the spatial disaggregation of the economic indicators that need to be
disaggregated from NUTS3 level to LAU level is depicted in Figure 14.
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Target variables

Figure 14 R-squared score and importance of different predictor variables for economic
variables at NUTS3 (limited to variables with importance > 0.05).

For some cases, such as “employment_in_nace_sector_a”, the prediction quality is poor
and the predictor is not deemed important. Nace sector A is the agriculture sector, and
it seems that none of the predictor variables are important and none even stand out.
In some cases, such as “gross_value_added_nace_sector_c”, the quality is considered
low but the importance of the predictor “non-residential heat demand” is rather high.
This indicates that, while this predictor variable is deemed the most important one for
the model to determine the disaggregation, the model cannot disaggregate with good
results. Both cases are indicative of the issue that there is simply not enough data at
LAU level to perform a spatial disaggregation of sufficient quality.
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4.2.3 Other indicators

The quality of other indicators, which mainly relate to pollution, vulnerability and risks
that are available at NUTS3 and for which a disaggregation to LAU is depicted in Figure
15.
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Figure 15 R-squared score and importance of different predictor variables for other variables
at NUTS3 (limited to variables with importance > 0.05).

It is very visible on Figure 15 that a lot of the air pollution related data disaggregates
quite well using different predictor variables relating to greenery cover, infrastructure,
such as road network, and population density in terms of residential heat demand. Given
the different pollutants and knowledge on the source of these pollutants - some more
connected to road traffic, others with heating - this result is within expectations.

The algorithm cannot find decent predictors for “soil sealing”: the quality is low and
none of the predictor values is deemed important. Additional LAU level data would be
needed to improve this prediction.

We also performed a test with other target variables such as “exposure of vulnerable
people to heat waves”, “coping capacity to natural hazards”, “vulnerability to natural
hazards”, “susceptibility to natural hazards” and “quality of life index”. These indicators
are calculated based on several other indicators and are made available in the ESPON

Database Portal ( https://database.espon.eu/ ) at NUTS3 level. While there appears to
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be a good prediction “exposure of vulnerable people to heat waves” using “residential
heat demand”, one must be careful with the interpretation. A high residential heat
demand implies a high population; the exposure of vulnerable people to heat waves
first and foremost requires people. However, the number of people is not a determining
factor for the risk of exposure. The data may show some correlation which the model
catches, but spatial disaggregation of such indicators is not meaningful. The random
forest model is therefore discarded in this case. The source values should be provided
at LAU level and, since we do not have this data at LAU, the assigned values at LAU
level are the same as the parent NUTS3 region. The quality rating for this dataset at
LAU level is set to LOW (the dataset at NUTS3 level is VERY HIGH as that is the level of
the source data).

4.2.4 Geographical distribution of data - further analysis

To have verifiable results, first a prediction of values at NUTS3 level will be considered
and the predicted NUTS3 level should be similar in distribution as the target distribution.
This is shown in Figure 16, which shows the variable “employment” and its prediction
using “non-residential heat demand”. The top row shows the data at NUTS3 level; from
left to right it shows the known data for “employment”, the predictor variable “non-
residential heat demand” (aggregated from LAU) and the predicted spatial distribution
at NUTS3 level. Each map also contains a violin plot that visualises the distribution of
values. The spatial correlation between the target variable at NUTS3 level (top left) and
the aggregated predictor variable at NUTS3 (top middle) is immediately obvious from
the maps. The predicted values at NUTS3 level (top right) are slightly underestimated
as confirmed on the violin plot but the geographics spread is very similar to the original
values.

On the second row of Figure 16, the predictor variable is shown at LAU level (bottom
middle), alongside the prediction at LAU level for the “employment” (bottom right).
Here it is evident that the high heat demand values are very concentrated in the big
cities, which creates a large difference with the small regions that have relatively small
values in comparison. As a result, this causes the predictor to also assign very low
values for “employment” in those regions and effectively resulting in a
disproportionately big employment in the cities. The low values in the small regions are
very likely too small and not realistic, despite the fact that the disaggregation to LAU
level of “employment” using “non-residential heat demand” is evaluated as MEDIUM
based on R-squared (Figure 14). An important data-aspect is that non-residential heat
demand data is collected from the Hotmaps project
(https://zenodo.org/records/4687026), which provides a geo-tiff image. In a geo-tiff,
the spatial regions are regular shaped regions that do not necessarily overlap well with
the LAU regions. However, at LAU level, the pixel size of the geo-tiff is potentially too
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big and suffers from partial overlaps making it potentially less suitable to work at LAU
level.

The example using “non-residential heat demand” illustrates that an indicator may

appear sufficient to reach the initial goal of this deliverable (NUTS3), however,
downscaling further to LAU levels may need more data and verification. This
investigation will continue within the future work of WP3.
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Figure 16 Comparison of the spatial distribution of “employment” and “"non-residential heat
demand”.

4.3 Spatial disaggregation of NUTS2 datasets

The spatial disaggregation of NUTS2 datasets follows the same approach as the spatial
disaggregation for NUTS3 datasets (Section 4.3). The result of the analysis of the

candidate proxy data sets are shown on Figures 17-21. There are a few datasets with
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good predictor variables, e.g. “male employment in agriculture age 15-64" is well
predicted by “employment in NACE sector a” (Figure 17). This is a rather trivial case as
NACE sector a is the agricultural sector, but it is helpful to see such a connection
confirmed in the methodology.
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Figure 17 R-squared score and importance of different predictor variables at NUTS2 (limited to
variables with importance > 0.05).

Figure 18 shows, using variables for transport, that it is possible for predictor variables
to be considered important, but their use still does not yield a disaggregation with a
good R-squared value. The explanation is that the two assessments (R-squared and
importance permutation) consider different aspects. The importance permutation
provides insight into which of the predictor variables has the biggest impact in
performing the disaggregation, but this does not necessarily imply a good
disaggregation - which is what R-squared aims to assess. The number of refineries
logically connects with the maritime transport of freight (reflected by the high
importance permutation), but the spatial distribution of maritime freight transport is
not really a variable that lends itself to a spatial distribution within countries or large
regions. Similarly, air transport of freight will only be possible at airports: while the
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transported goods may connect to “gross_value_added_nace_sector_k”, the spatial
distribution of this predictor variable may not very well match the locations of airports.

total_number_of_businesses A -
HIGH
gross_value_added_nace_sector k - - - . (0.9 to 1)
gross_value_added_nace_sector_j 1 - -
employment_nace_sector k . L -
MEDIUM
employment_nace_sector j 1 - (0.5 t00.9)

port_areas_cover

number_of_refineries A
- - Low
L

Predictor variables

(0.2 to 0.5)
heat_demand_non_residential - - -

fuel_demand_of refineries 4

Quality rating based on R-squared score

VERY LOW
(-0 t0 0.2)

electricity_demand_of_refineries
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Figure 18 R-squared score and importance of different predictor variables for transport
variables at NUTS2 (limited to variables with importance > 0.05).

Similarly, Figure 19, Figure 20 and Figure 21 show the predictor variables for economic
variables and some general statistics, for variables relating to animal population, for
data on vehicle stock, respectively.
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cproj_annual_mean_temperature_heating_degree_days - >

statistical_area -| - <
quality_of_life_index 4 - . HIGH
population_male_age_between_50_and_54 - - (0:9.ta2)
population_male_age_between_45_and_49 - . -
population_female_age_between_70_and_74 -
population_female_age_between_45_and_49 -
population_female_age_between_40_and_44 - MEDIUM
population_female_age_between_15_and_19 - (0.5t00.9)
population_age_between_70_and_74 -
population_age_between_45_and_49 - : -
gross_value_added_nace_sector_c . -

gross_value_added_nace_sector_b_e - - oW

gross_value_added_nace_sector_a - - (0.2 to 0.5)

deaths : - -
coping_capacity_to_natural_hazards - - - -
average_air_pollution_due_to_pm2.5 1 - » -4

Predictor variables
Quality rating based on R-squared score

average_air_pollution_due_to_o3 " ’ -
. VERY LOW
river_flood_depth - - (- t0 0.2)

peat_bogs_cover -

pastures_cover - , -

Target variables

Figure 19 R-squared score and importance of different predictor variables for economic
variables and some general statistics at NUTS2 (limited to variables with importance > 0.05).
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statistical_area - - - . - - -

soil_sealing - . . - -
- HIGH

road_transport_of_freight . - - - - (0.9to 1)

quality_of_life_index - . = . -
number_of_small_businesses : . -

gross_value_added_nace_sector_c -
MEDIUM

-
gross_value_added_nace_sector b e{ @ - . (0.5 to 0.9)
-

gross_value_added_nace_sector_a{ @@ -

employment_nace_sector_a - - - - -

salt_marshes_cover - : . - -

road_network_length - - : . E - - Low

river_flood_depth -

pastures_cover - - : -

number_of paper_and_printing_industries - . . -

number_of_non_metallic_mineral_industries - -
intertidal_flats_cover - - -

generation_capacity_of solar_plants 4 : -

Target variables

Figure 20 R-squared score and importance of different predictor variables for animal
population at NUTS2 (limited to variables with importance > 0.05).

(0.2 to 0.5)

Quality rating based on R-squared score

VERY LOW
(- t0 0.2)
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population_male_age_greater than_or_equal_to 90 - - 4 -
population_male_age_between_60_and_64 - - -
population_male_age_between_40_and_444 == - - - - HIGH
population_male_age_between_35_and_39 - - = (0.9t01)
population_female_age_greater_than_or_equal_to_90 . - -
population_female_age_between_70_and_74 - - - - - -
population_female_age_between 65 and 69 - - <)
population_female_age_between_60_and_64 - - - - MEDIUM
population_female_age_between_45_and_49 - - - - (0.5 to 0.9)
population_female_age_between_40_and_44 - - - - - -
population_female_age_between_35_and_39 - - -
population_age_greater_than_or_equal_to_90 1 - - - -
population_age_between_45_and_49 q - . -

population_age_between_40_and_44 - - - - - - LOW
(0.2 to 0.5)

Predictor variables

employment_nace_sector_f -
deaths - - -
average_air_pollution_due_to_pm2.5 - - -

road_network_length 4

pastures_cover -

Quality rating based on R-squared score

= VERY LOW
number_of_bicycle_rental_and_parking_places — (-= t0 0.2)

generation_capacity_of_hydro_run_of river_and_poundage_plants -
discontinuous_urban_fabric_cover L

Target variables

Figure 21 R-squared score and importance of different predictor variables for vehicle stock at
NUTS2 (limited to variables with importance > 0.05).

4.4 Spatial disaggregation of NUTS1 and NUTSO datasets

No datasets at NUTS1 level were collected. At NUTSO level are all the dataset that
originate from the EUCalc Pathways, as well as 332 additionally collected datasets. This
is the level at which we have the largest humber of datasets, as much data is supplied
or estimated at country level. However, with 27 member states, each of these datasets
has just 27 datapoints. This is far too little to train any automatic system.

Here, it was necessary to resort to a manual assignment of the predictor variables,
based on the relationships seen between target and proxy datasets at NUTS3 and
NUTS2 levels, in combination with an understanding of the data. Table 5 shows the
proxies assigned to some variables, collected at NUTSO level. All further variables can
be found in the DSP.
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Table 5 Examples of proxies assigned to variables at NUTSO.

Variable

Proxy

production_growth

gross_value_added

emission_factor_of _gasoline

(no proxy, same value all regions)

occupancy_bus

(no proxy, same value all regions)

paper_and_cardboard_waste

population + dump_sites_cover

housing_cost_overburden_rate_by_pover
ty_status

income_of_households / population

energy_demand_in_agriculture_and_fore
stry_and_fisheries_from_electricity

gross_value_added_in_nace_sector_a

energy_demand_of_chemical_and_petro
chemical_industries_from_electricity

electricity_demand_of_chemical_industri
es

energy_demand_of_chemical_and_petro
chemical_industries_from_natural_gas

fuel_demand_of_chemical_industries

residential_energy_demand_space_cooli
ng

annual_mean_temperature_cooling_degr
ee_days + income_of_households +
population

Similarly, Table 6 shows the proxies assigned to some of the EUCalc variables.

Table 6 Examples of proxies assigned to EUCalc variables.

Variable

Proxy

eucalc_agr_domestic_production_afw_ce
real

non_irrigated_arable_land_cover

eucalc_agr_emissions_ch4_liv_enteric_a
bp_dairy_milk

number_of_dairy_cows

eucalc_bld_emissions_co2_residential_sf
h_non_elec_hw

heat_demand_residential
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eucalc_dhg_energy_demand_heat_distric | (heat_demand_residential+heat_demand

t _hon_residential) / statistical_area
eucalc_ind_emissions_co2e_chemicals Electricity_demand_of_chemical_industri
es +

fuel_demand_of_chemical_industries

eucalc_tra_energy_demand_freight_avia | air_transport_of freight
tion

eucalc_wat_water_consumption_househo | population
Id

eucalc_tra_vehicle_fleet_freight_marine_ | maritime_transport_of_freight
bev

eucalc_ind_material_production_glass electricity_demand_of_non_metallic_min
eral_industries+fuel_demand_of_non_m
etallic_mineral_industries

5 Working Disaggregation Tool

The disaggregation workflow is implemented in the Python programming language. It
is published on the GitHub account of Forschungszentrum Jilich. It can be found under
https://github.com/FZJ-IEK3-VSA/ETHOS.zoomin.

The workflow reads the collected data from a local database, along with details
regarding proxies or random forest model to be used to disaggregate the data to LAU
level. Based on this input, the data is disaggregated. The disaggregated data is written
to the final table in the database i.e. processed data table (refer to Figure 2).

In a subsequent step, the national decarbonisation pathway data from EUClac is
disaggregated in a similar way.

6 Data Access

6.1 Data sharing platform

The processed data table is accessible through the DSP. This platform is being developed
in T3.3. An initial version was presented in Deliverables D3.2 and D2.5. The goal of the
DSP is to provide a single access point for all the spatial data. It allows access to
datasets for a specified region, at the specified resolution - which is independent of the
resolution of the source.
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The DSP is an Application Programming Interface (API) that provides access to the
databases; the format of the API URL is described below. The URL can be constructed
with the desired set of parameters and pasted in any web browser to access the
corresponding data.

API URL Format: http://data.localised-
project.eu/dsp/vl/region data/?api key=api key&region=region

The parts highlighted in red are the parameters. These are described in Table 7.

Table 7 API parameters.

Parameter Description Options

api_key The confidential API key.? -

region The region code corresponding to | Any region code.
the country's region for which the ) ]
data is to be queried. Note: a list of regions,

corresponding to the
specified resolution and
country can be queried in
the following manner:

http://data.localised-
project.eu/dsp/v1/region_m
etadata/?api_key=api_key&
resolution=resolution&count
ry=country

Example API query:

Suppose the query is to be made for Berlin in Germany. The NUTS3 region code of
Berlin is DE300. The API URL would be:

2 The DSP is not yet fully ready for public sharing. It is due in September, 2024. In the meantime,
the confidential API key is only shared within the consortium.
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http://data.localised-
project.eu/dsp/vl/region data/?api key=XXXXXXX&region=DE300

The result would look as follows:
HTTP 200 OK

Allow: GET
Content-Type: application/json

Vary: Accept

"count": 1,
"next": null,
"orevious": null,

"results":

"value": 3669491.0,

"year": 2020,

"var name": "population",
"var description": null,
"var unit": "number",
"var aggregation method": '"sum",
"taggings'":
"tag dimension": "sector",
"tag name'": '"general stat"
’
"tag dimension": "type",
"tag name": '"stock"
’
"tag dimension": "commodity",
"tag name": "not applicable"

LOCALISED
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"tag dimension": "resource'
"tag name": "not applicable"
"tag dimension": "link"
"tag name": "not applicable"
"tag dimension": "other"
"tag name": "total"

"var source name": "Eurostat'

"var source link"
"https://ec.europa.eu/eurostat/databrowser/view/DEMO R PJANGRP3/default/table?lang=en"

"var source citation": "Eurostat, "“Population on 1 January by age group, sex and NUTS 3
region.”

https://ec.europa.eu/eurostat/databrowser/view/DEMO_R PJANGRP3/default/table?lang=en
(accessed Jun. 29, 2023)."

"var source license'": "Creative Commons Attribution 4.0 International (CC BY 4.0)"
"original resolution": "NUTS3"
"disaggregation binary criteria': null

"disaggregation proxy" "Disaggregation using random forest model. Top 3 1important
variables in population prediction: heat demand residential, heat demand non residential,

road network length"

"calculation equation": null

"pathway file name": null

"climate experiment": null

"quality rating": "VERY HIGH"

Please note that only one variable, population, is shown in the above example resulit.

The actual query provides all the data collected and curated for the region. The table
below describes the variable fields:
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Table 8 Variable fields in the API query output.

Field Description

value The value of the variable.

year The year for which the data is collected.
var_name Name of the variable.

var_description

A detailed description of the variable is provided, where
required. It is left blank, otherwise.

var_unit

The unit in which the value is expressed.

var_aggregation_method

When the data is queried at higher level, the data from
lower level is aggregated. The type of aggregation
performed is indicated here. This could, for example, be
sum or mean.

taggings

This is a list of keywords that helps describe and
categorise the variable further.

var_source_name,
var_source_link,

var_source_citation

The information regarding data source is specified here.

original_resolution

The resolution at which the data was available and
therefore, collected is specified here.

disaggregation_binary_cri
teria3

During disaggregation of some datasets, the proxy value
in certain LAU regions are preset to 0 based on a criteria.
This criteria could, for example, be population density
greater than a particular threshold.

Consequently, the disaggregation of values from a parent
region to its child LAU regions only considers those LAU
regions with non-zero values.

3 This is an experimental feature that needs further testing.
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disaggregation_proxy

This field specifies the disaggregation method used to
downscale the values from its original resolution to LAU
resolution.

calculation_equation

If a dataset is not collected but calculated based on other
datasets, the equation is shown in this field.

pathway_file_name

This field is specific to EUCalc national decarbonisation
pathway variables that are downscaled here to local
regions. They describe the pathways.

climate_experiment

This field is specific to climate indicators. They describe
which  climate scenario, or the Representative
Concentration Pathway (RCP) considered to arrive at the
climate projections.

quality_rating

Specifies the quality of the data.

API documentation:

Further information regarding the API can be found in the official documentation
under: http://data.localised-project.eu/dsp/vi/docs/

6.2 API Client

An API client provides ready-to-run scripts that allow one to query the API data with
minimal effort. These scripts not only allow the user to query the data, but also to save
it in a desired format, such as .csv or .json, in their local machine. Such an API client is
developed for the API and is currently hosted on GitHub. This can be found under:
https://qgithub.com/FZJ]-1EK3-VSA/LOCALISED-Datasharing-API-Client

This client includes functions written in the Python language that allow users to make
queries and save the regional data. This helps avoid querying the data each time. The
usage of these functions is described through an example script. This can be found in a

Jupyter

Notebook under:

https://github.com/FZ]-IEK3-VSA/LOCALISED-Datasharing-API-

Client/blob/master/examples/single region all variables.ipynb
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7 Conclusion

Deliverable D3.1 is aimed at providing the spatial disaggregation tool in order to have
complete datasets at all resolutions. The concept was extended from disaggregating
from NUTS3 (as per the proposal) to LAU level (due to increased interests and
applicability of the outcomes). The spatial disaggregation tool aims to use proxy data,
i.e. data which exhibits a connection to the dataset to be disaggregated, and for which
a similar spatial distribution can be reasonably assumed.

The use of proxy data implies the need for additional datasets, which were collected in
the context of D2.5 and D3.3. The “simple” disaggregation where the spatial distribution
of the proxy dataset is directly applied was investigated. The aim of the research was
to automatically find proxy datasets and automatically assess the quality of the resulting
disaggregations and to improve on this simple approach using machine learning
techniques. The reasons for the employment of machine learning techniques are:

1. To identify complex relationships between proxy datasets and the data to be
disaggregated.
2. To be able to quickly adjust to updated and improved datasets.

For datasets at NUTSO level, the automation possibilities are limited as every NUTSO
datasets only has 27 data points. The methodology works well to disaggregate to NUTS3
level, provided suitable proxy data is available and identified. The availability and
suitability as such became key for the functioning of the tool. For the disaggregation to
LAU level, the problem of data availability is worse as the general lack of proxy data at
this resolution limits the possibility of improving over the “simple” disaggregation, even
with manually selected proxy datasets.

The accuracy of the disaggregated data depends on the availability and quality of local-
level proxy data. To ensure transparency for both other WPs within the project and
external users, each value is accompanied by a quality rating.. Furthermore, the users
of these tools will be able to adjust all values for their region. So even if the LOCALISED
estimate for a particular region is incorrect due to lack of quality data, this will not hurt
the usefulness of the tools developed.

Together with the spatial disaggregation, the methodology also provided an approach
to estimated data for regions where data are missing. This approach also uses additional
datasets to help to determine the values of missing data. There can be different reasons
why data are missing, which relates to different interpretations of the data. This was
taken into account, as explained in this deliverable.
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As the data gathering and processing is an ongoing process throughout the project, the
results of the disaggregations (and thus the quality of some datasets) can increase
when more suitable proxy data becomes available.
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